Home
Class 12
MATHS
A tangent having slope of -4/3 to ellips...

A tangent having slope of `-4/3` to ellipse `x^2/a^2+y^2/b^2=1` Intersect the major and minor axis at point `A` and `B` (on positive axes) respectively then distance of fine `AB` from the centroid of triangle `OAB,` where is the origin, is

Promotional Banner

Similar Questions

Explore conceptually related problems

A tangent having slope of -4/3 to the ellipse (x^2)/(18)+(y^2)/(32)=1 intersects the major and minor axes at points A and B , respectively. If C is the center of the ellipse, then find area of triangle A B Cdot

A tangent having slope of -4/3 to the ellipse (x^2)/(18)+(y^2)/(32)=1 intersects the major and minor axes at points A and B , respectively. If C is the center of the ellipse, then find area of triangle A B Cdot

A tangent having slope of -(4)/(3) to the ellipse (x^(2))/(18)+(y^(2))/(32)=1 intersects the major and minor axes at points A and B, respectively.If C is the center of the ellipse,then find area of triangle ABC.

A tangent having slope of -4/3 to the ellipse (x^2)/(18)+(y^2)/(32)=1 intersects the major and minor axes at points Aa n dB , respectively. If C is the center of the ellipse, then find area of triangle A B Cdot

A tangent having slope -1/2 to the ellipse 3x^2+4y^2=12 intersects the X and Y axes in the points A and B respectively. If O is the origin, find the area of the triangle.

A tangent having slope (-4)/(3) to the ellipse (x^(2))/(18)+(y^(2))/(32)=1 intersects the major and minor axes at A and B .If o is origin,then the area of , Delta OAB is k sq.units where sum of digits of k is

If a tangent having a slope of -4/3 to the ellipse x^2/18 + y^2/32 = 1 intersects the major and minor axes in points A and B respectively, then the area of DeltaOAB is equal to (A) 12 sq. untis (B) 24 sq. units (C) 48 sq. units (D) 64 sq. units

If a tangent having a slope of -4/3 to the ellipse x^2/18 + y^2/32 = 1 intersects the major and minor axes in points A and B respectively, then the area of DeltaOAB is equal to (A) 12 sq. untis (B) 24 sq. units (C) 48 sq. units (D) 64 sq. units

If the point 3x+4y-24=0 intersects the X -axis at the point A and the Y -axis at the point B , then the incentre of the triangle OAB , where O is the origin, is