Home
Class 11
MATHS
4^(tan^2x)-2^(sec^2x)+1=0,x in [0,20]...

`4^(tan^2x)-2^(sec^2x)+1=0,x in [0,20]`

Promotional Banner

Similar Questions

Explore conceptually related problems

(tan 2x)/(1+ sec 2x) = tan x

The number of solutions of the equation tan^(2)x-sec^(10)x+1=0" for " x in (0, 20) is equal to

The number of solutions of the equation tan^(2)x-sec^(10)x+1=0" for " x in (0, 20) is equal to

the number of solution of the equation tan^2x-sec^(10)x+1=0 in (0,10) is -

If quad (2tan x)/(1+tan^(2)x))=((cos2x+1)(sec^(2)+2tan x))/(2) then f(4)=(i)11 (ii) 3(iii)0(iii)0

The equation tan^4x-2sec^2x+a=0 will have at least one solution if 1 < alt=4

Range of f(x)=(sec x+tan x-1)/(tan x-sec x+1)x in(0,(pi)/(2))

The value of int_(-(pi/4)^(1/3))^((pi/4)^(1/3))(x^2)/((1+sin^2x^3)(1+e^(x^7)))dxi s (a) 1/3tan^(-1)sqrt(2) (b) 1/(3sqrt(2))tan^(-1)sqrt(2) (c) int_0^(pi/4)(sec^2dx)/(sec^2x+tan^2x) (d) 1/3int_0^(pi/4)(sec^2x dx)/(sec^2x+tan^2x)

Number ofintegral solutions of the equation |tan x+sec x|=|tan x|+|sec x| in [0,2 pi] is