Home
Class 12
MATHS
If vec (a')=(vec b × vec c)/(veca*...

If `vec (a')=(vec b × vec c)/(veca*vec b × vec c)`, `vec (b')=(vec c × vec a)/(vec a*vec b × vec c)`, `vec (c')=(vec a × vec b)/(vec a*vec b × vec c)`. Prove that
`vec (a)=(vec (b') × vec (c'))/(vec (a')*vec (b') × vec (c'))`, `vec (b)=(vec (c') × vec (a'))/(vec (a')*vec (b') × vec (c'))`, `vec (c)=(vec (a') × vec (b'))/(vec (a')*vec (b') × vec (c'))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (vec(a). (vec(b) xx vec(c)) vec(a) = (vec(a) xx vec(b)) xx (vec(a) xx (c)) .

Prove that vec(a). {(vec(b) + vec(c)) xx (vec(a) + 2vec(b) + 3vec(c))} = [vec(a) vec(b) vec(c)] .

Prove that vec(a)[(vec(b) + vec(c)) xx (vec(a) + 3vec(b) + 4vec(c))] = [ vec(a) vec(b) vec(c)]

vec a * {(vec b + vec c) xx (vec a + 2vec b + 3vec c)} = [vec with bvec c]

If vec(a).vec(b)xx vec(c ) ≠ 0 and vec(a')=(vec(b)xx vec(c ))/(vec(a).vec(b)xx vec(c )), vec(b')=(vec(c )xx vec(a))/(vec(a).vec(b)xx vec(c )), vec(c')=(vec(a)xx vec(b))/(vec(a).vec(b)xx vec(c )) , show that : vec(a').(vec(b')xx vec(c'))=(1)/(vec(a).(vec(b)xx vec(c )))

If vec a + vec b + vec c = 0, prove that (vec a xx vec b) = (vec b xx vec c) = (vec c xx vec a)

If [vec(a) vec(b) vec(c)]=4 then [vec(a)times vec(b) vec(b)times vec(c)vec(c) times vec(a)] =

Prove that , vec(a) xx ( vec (b) + vec(c)) + vec(b) xx (vec(c) + vec(a)) + vec(c)xx(vec (a) + vec(b)) = vec(0)

Prove that vec(a) xx (vec(b) + vec(c)) + vec(b) xx (vec(c) + vec(a)) + vec(c) xx (vec(a) + vec(b)) = vec(0)

If vec(a).vec(b)xx vec(c )≠0 and vec(a')=(vec(b)xx vec(c ))/(vec(a).vec(b)xx vec(c )), vec(b')=(vec(c )xx vec(a))/(vec(a).vec(b)xx vec(c )), vec(c')=(vec(a)xx vec(b))/(vec(a).vec(b)xx vec(c )) , show that : vec(a).vec(a')+vec(b).vec(b')+vec(c ).vec(c')=3