Home
Class 9
MATHS
Prove that: (3^(-3)\ xx\ 6^2xx\ sqrt(98)...

Prove that: `(3^(-3)\ xx\ 6^2xx\ sqrt(98))/(5^2\ xx\ root(3)(1/(25))\ xx\ (15)^(-4/3)\ xx\ 3^(1/3))=28sqrt(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify : (3^(-3)xx6^(2)xx sqrt(98))/(5^(2)xx((1)/(25))^((1)/(3))xx(15)^(-(4)/(3))xx3^((1)/(3)))

Prove that: (3^(-3)x6^(2)x sqrt(98))/(5^(2)x(1)/(25)3x(15)^(-(4)/(3))x3^((1)/(3)))=28sqrt(2)

Prove that: (2^(1/2)\ xx\ 3^(1/3)\ xx\ 4^(1/4))/(10^(-1/5)\ xx\ 5^(3/5))\ -:(3^(4/3)\ xx\ 5^(-7/5))/(4^(-3/5)\ xx\ 6)=10

Prove that: (sqrt(3\ xx\ 5^(-3))\ -:root(3)(3^(-1))\ sqrt(5))\ xx\ (3\ xx\ 5^6)^(1/6)\ =3/5

1 (4)/(5) xx 2 (2)/(3) xx 3 (1)/(3) xx (1)/(4) =

to prove (2^(n)+2^(n-1))/(2^(n+1)-2^(n)))=(3)/(2)(3^(-3)*6^(2)*sqrt(98))/(5^(2)*((1)/(25))^((1)/(3))*(15)^(-(4)/(3))*3^((1)/(3)))=28sqrt(2)

Prove that 3^((1)/(2)) xx 3^((1)/(4)) xx 3^((1)/(8)) …..= 3

((3)^(-5)xx5^(-2)xx27^(2/3))/(6^2xx25^(1/2)xx49^(-1/2))

root(3)(2)times sqrt(5)