Home
Class 11
MATHS
If z1 = 1-i, z2=-2 + 4i, Find the Modul...

If `z_1 = 1-i, z_2=-2 + 4i`, Find the Modulus of `Z=(Z_1.Z_2)/bar z_1`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1 = 3i and z_2 = -1 -i , find the value of arg z_1/z_2 .

z_1 = 1+i, z_2 =2-3i, verify the following: bar (z_1. z_2) = bar (z_1) . bar (z_2)

z_1 = 1 + i, z_2 = 2 - 3i , verify the following. bar(z_1 . z_2) = bar z_1 . bar z_2

z_1 = 1 + i, z_2 = 2 - 3i , verify the following. bar(z_1 / z_2) = bar z_1 / bar z_2

If z_(1) = 2 - i and z_(2) = -4 + 3i, find the inverse of z_(1)z_(2) and (z_(1))/(z_(2)) .

z_1 = 1+i, z_2 =2-3i, verify the following: bar (z_1+z_2) = bar (z_1) + bar (z_2)

z_1 = 1+i, z_2 =2-3i, verify the following: bar (z_1-z_2) = bar (z_1) - bar (z_2)

z_1 = 1+i, z_2 =2-3i, verify the following: bar (z_1/ z_2) = bar (z_1) / bar (z_2)

Suppose z_1 = 1 - i and z_2 = -2 + 4i Find z_1z_2