Home
Class 12
MATHS
lf (1-ix)/(1+ix)=a-ib and a^2+b^2=1 , wh...

lf `(1-ix)/(1+ix)=a-ib and a^2+b^2=1` , where `a, b in R and i = sqrt-1`, then x is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1-ix)/(1+ix)=a-ibanda^(2)+b^(2)=1,where a,b in Randi=sqrt(-1), then x is equal to

If (1-ix)/(1+ix)=a-ibanda^(2)+b^(2)=1,where a,b in Randi=sqrt(-1), then x is equal to

If (1-ix)/(1+ix)=a-ibanda^(2)+b^(2)=1,where a,b in Randi=sqrt(-1), then xis equal to

If (1-ix)/(1+ix)=a-ibanda^(2)+b^(2)=1,where a,b in Randi=sqrt(-1), then xis equal to

if cos (1-i) = a+ib, where a , b in R and i = sqrt(-1) , then

if cos (1-i) = a+ib, where a , b in R and i = sqrt(-1) , then

if cos (1-i) = a+ib, where a , b in R and i = sqrt(-1) , then

if cos (1-i) = a+ib, where a , b in R and i = sqrt(-1) , then

if (1-ix)/(1+ix)=a-ib ,then prove that a^2+b^2=1 (a,b x are real).

Show that a real value of x will satisfy the equation (1-ix)/(1+ix)= a -ib if a^2+b^2=1 , where a, b are real.