Home
Class 10
MATHS
Let PQ and RS be tangents at the extremi...

Let PQ and RS be tangents at the extremities of the diameter PR of a circle of radius r. PS and RQ intersect at a point X on the circumference of the circle. If PQ = 9 and RS = 4, then the diameter of the circle is :

Text Solution

Verified by Experts

`/_PRX=theta`
`tantheta=(PQ)/(PR)`
`PR=9Cottheta-(1)`
`tan(90-theta)=(RS)/(PR)`
`PR=4/Cottheta=4tantheta`
`9/4=tan^2theta`
`tantheta=3/2`
`PR=4tantheta=12/2=6`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let PQ and RS be tangents at the extremities of the diameter PR of a circle of radius r. If PS and RQ intersect at a point X on the circumference of the circle, then 2r equals:

Let PQ and RS be tangents at the extremities of the diameter PR of a circle of radius r. If PS and RQ intersect at a point X on the circumference of the circle,then 2r equals

Let PQ and RS be tangents at the extremities of the diameter PR of a circle of radius r. If PS and RQ intersect at a point X on the circumference of the circle, then 2r equals

Let PQ and RS be tangent at the extremities of the diameter PR of a circle of radius r. If P S and RQ intersect at a point X on the circumference of the circle,then prove that 2r=sqrt(PQ xx RS).

Let PQ and RS be tangents at the extremities of one diameter PR of a circle of radius r. If PS and RQ intersect at a point X on the circumference of the circle, than (2r)/sqrt(PQ cdot RS) equals_____

Let P Q and R S be tangent at the extremities of the diameter P R of a circle of radius r . If P S and R Q intersect at a point X on the circumference of the circle, then prove that 2r=sqrt(P Q xx R S) .

Let P Q and R S be tangent at the extremities of the diameter P R of a circle of radius r . If P S and R Q intersect at a point X on the circumference of the circle, then prove that 2r=sqrt(P Q xx R S) .

Let P Q and R S be tangent at the extremities of the diameter P R of a circle of radius r . If P S and R Q intersect at a point X on the circumference of the circle, then prove that 2r=sqrt(P Q xx R S) .

Let P Q and R S be tangent at the extremities of the diameter P R of a circle of radius r . If P S and R Q intersect at a point X on the circumference of the circle, then prove that 2r=sqrt(P Q xx R S) .