Home
Class 12
MATHS
|(1,omega,omega^2),(omega,omega^2,1),(om...

`|(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)|`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is the cube root of unity then {:abs((1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)):} is

If omega is cube roots of unity, prove that {[(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)]+[(omega,omega^2,1),(omega^2,1,omega),(omega,omega^2,1)]} [(1),(omega),(omega^2)]=[(0),(0),(0)]

If omega is cube roots of unity, prove that {[(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)]+[(omega,omega^2,1),(omega^2,1,omega),(omega,omega^2,1)]} [(1),(omega),(omega^2)]=[(0),(0),(0)]

If omega is cube roots of unity, prove that {[(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)]+[(omega,omega^2,1),(omega^2,1,omega),(omega,omega^2,1)]} [(1),(omega),(omega^2)]=[(0),(0),(0)]

Which of the following is a non singular matrix? (A) [(1,a,b+c),(1,b,c+a),(1,c,a+b)] (B) [(1,omega, omega^2),(omega, omega^2,1),(omega^2,1,omega)] where omega is non real and omega^2=1 (C) [(1^2,2^2,3^2),(2^2,3^2,4^2),(3^2,4^2,5^2)] (D) [(0,2,-3),(-2,0,5),(3,-5,0)]

Which of the following is a non singular matrix? (A) [(1,a,b+c),(1,b,c+a),(1,c,a+b)] (B) [(1,omega, omega^2),(omega, omega^2,1),(omega^2,1,omega)] where omega is non real and omega^3=1 (C) [(1^2,2^2,3^2),(2^2,3^2,4^2),(3^2,4^2,5^2)] (D) [(0,2,-3),(-2,0,5),(3,-5,0)]

Let omega be the complex number cos((2pi)/3)+isin((2pi)/3) . Then the number of distinct complex numbers z satisfying Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0 is

Let omega be the complex number cos((2pi)/3)+isin((2pi)/3) . Then the number of distinct complex cos numbers z satisfying Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0 is

Let omega be the complex number cos((2pi)/3)+isin((2pi)/3) . Then the number of distinct complex cos numbers z satisfying Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0 is