Home
Class 10
MATHS
2(a x-b y)+(a+4b)=0 , 2(b x+a y)+(b-4a)...

`2(a x-b y)+(a+4b)=0 , 2(b x+a y)+(b-4a)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise the using the identity a ^(2) -b ^(2) = (a +b) (a-b). (x + y) ^(4) - (x - y)^(4)

Factorise the using the identity a ^(2) -b ^(2) = (a +b) (a-b). x ^(4) - y ^(4) + x ^(2) - y ^(2)

Prove that (a b+x y)(a x+b y)>4a b x y(a , b ,x ,y >0)dot

Prove that (a b+x y)(a x+b y)>4a b x y(a , b ,x ,y >0)dot

Prove that (a b+x y)(a x+b y)>4a b x y(a , b ,x ,y >0)dot

Prove that (a b+x y)(a x+b y)>4a b x y(a , b ,x ,y >0)dot

If the origin is shifted to the point ((a b)/(a-b),0) without rotation, then the equation (a-b)(x^2+y^2)-2a b x=0 becomes (A) (a-b)(x^2+y^2)-(a+b)x y+a b x=a^2 (B) (a+b)(x^2+y^2)=2a b (C) (x^2+y^2)=(a^2+b^2) (D) (a-b)^2(x^2+y^2)=a^2b^2

If the origin is shifted to the point ((a b)/(a-b),0) without rotation, then the equation (a-b)(x^2+y^2)-2a b x=0 becomes (A) (a-b)(x^2+y^2)-(a+b)x y+a b x=a^2 (B) (a+b)(x^2+y^2)=2a b (C) (x^2+y^2)=(a^2+b^2) (D) (a-b)^2(x^2+y^2)=a^2b^2

Two straight lines are perpendicular to each other. One of them touches the parabola y^2=4a(x+a) and the other touches y^2=4b(x+b) . Their point of intersection lies on the line. x-a+b=0 (b) x+a-b=0 x+a+b=0 (d) x-a-b=0