Home
Class 12
MATHS
A function y = f(x) satisfies the differ...

A function `y = f(x)` satisfies the differential equation`(dy)/(dx)+x^2y+2x=0,f(1)=1` then the value of `f(1)` is-

Promotional Banner

Similar Questions

Explore conceptually related problems

A function y=f(x) satisfies the differential equation (d y)/(d x)+x^2 y=-2 x, f(1)=1 . The value of |f^( prime prime)(1)| is

If y=f (x) satisfy the differential equation (dy)/(dx) + y/x =x ^(2),f (1)=1, then value of f (3) equals:

If y=f (x) satisfy the differential equation (dy)/(dx) + y/x =x ^(2),f (1)=1, then value of f (3) equals:

If y=f(x) satisfy differential equation ( dy )/(dx)-y=e^(x) with f(0)=1 then value of f'(0) is

Let y=f(x) satisfy the differential equation (dy)/(dx)=(x+y)/(x),y(1)=1, then y((1)/(e)) is equal

The function y=f(x) is the solution of the differential equation (dy)/(dx)=(2xy+y^(2))/(2x^(2)) If f(1)=2, then the value of f((1)/(4)) is