Home
Class 12
MATHS
If a, b, c are non-zero distinct real n...

If `a, b, c` are non-zero distinct real numbers and `a + b+c=0`, then `(a^2)/(2a^2+b c)+(b^2)/(2b^2+a c)+(c^2)/(2c^2+a b)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are non-zero distinct real numbers and a+b+c=0, then (a^(2))/(2a^(2)+bc)+(b^(2))/(2b^(2)+ac)+(c^(2))/(2c^(2)+ab)

If a,b,c are non-zero real numbers and a+b+c=0, then the value of (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab) is (A)0(B)2(D)4(C)3

If a, b and c are distinct positive real numbers and a^2 + b^2 + c^2 = 1, then ab + bc + ca is

If a,b , c are distinct +ve real numbers and a^(2)+b^(2)+c^(2)=1" then "ab+bc+ca is

If a , b , c are all non-zero and a+b+c=0 , then (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)= ? .

If a, b, c are distinct positive real numbers and a^(2)+b^(2)+c^(2)=1 , then ab+bc+ca is :

If a, b and c are positive real numbers such that a

If a,b, and c are distinct positive real numbers and a^(2)+b^(2)+c^(2)=1, then ab+bc+ca is

If a, b, c are distinct real numbers, show that the points (a, a^2), (b, b^2) and (c, c^2) are not collinear.