Home
Class 12
MATHS
If a,b,c are unit vectors then |veca-vec...

If a,b,c are unit vectors then `|veca-vecb|^2+|vecb-vec c|^2+|vec c-veca|^2` has its maximum value `=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb, vec c are unit vectors, then the value of |veca-2vecb|^(2)+|vecb-2vec c|^(2)+|vec c-2 vec a|^(2) does not exceed to :

If veca, vecb, vec c are unit vectors, then the value of |veca-2vecb|^(2)+|vecb-2vec c|^(2)+|vec c-2 vec a|^(2) does not exceed to : (a) 9 (b) 12 (c) 18 (d) 21

If vec a , vec b , vec c are unit coplanar vectors , then [2veca -vecb ,2vecb -vec c ,2vec c -veca ] is equal to : a)1 b)0 c) -sqrt3 d) sqrt3

If hata, hatb are unit vectors and vec c is such that vec c=veca xx vec c +vecb , then the maximum value of [veca vecb vec c] is :

If veca,vecb,vecc are coplanar vectors then find value of [veca-vecb+vec2c vecb-vec c+2veca veca+2vecb-vec c]

If veca,vecb,vecc are coplanar vectors then find value of [veca-vecb+vec2c vecb-vec c+2veca veca+2vecb-vec c]

If vec a, vec b, vec c are unit vectors such that vec a+ vec b+ vec c = vec 0 , then find the value of vec a* vecb + vec b* vec c +vec c* veca .

If veca , vec b all are unit vector, then the greatest value of |veca +vecb| + |veca-vecb| is