Home
Class 12
MATHS
" The value of "lim(x rarr0)(int(0)^(x)c...

" The value of "lim_(x rarr0)(int_(0)^(x)cos t^(2)dt)/(x)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x rarr0)(int_(0)^(x)cos t^(2)dt)/(x)

The value of lim_(x rarr0)(int_(0)^(x^(2))cos t^(2)dt)/(x sin x) is

The value of lim_(x rarr 0) (int_(0)^(x^(2))cos t^(2)dt)/(x sin x) is :

The value of lim_(x rarr0)(int_0^(x^2) cost^2dt)/(x sin x) is

The value of lim_(x rarr0)(int_(0)^(x)fdt)/(x) is

Thevalueof lim_ (x rarr0) (int_ (0) (cos t ^ (2))) / (x) dt

The value of lim_(x rarr 0) (int_(0)^(x^(2))sec^(2)t dt)/(x sin x) is :

The value of lim_(x rarr0)(int_(0)^(x) xe^(t^(2))dt)/(1+x-e^(x)) is equal to

lim_ (x rarr0) (int_ (0) ^ (x) cos tdt) / (x) =

The value of lim_(x rarr 0) (int_0^(x^2)sec^2tdt)/(x sinx) is :