Home
Class 12
MATHS
The function f(x)=1/(1+x^2) is decreasin...

The function `f(x)=1/(1+x^2)` is decreasing in the interval (i) `(-infty,-1)` (ii) `(-infty,0)` (iii) `(1,infty)` (iv) `(0,infty)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x) = x^2 is increasing in the interval: a)(-1,1) b) (-infty,infty) c) (0,infty) d) (-infty,0)

The function sinx-bx+c will be increasing in the interval (-infty,infty) , if

The function sinx-bx+c will be increasing in the interval (-infty,infty) , if

The function f(x)= x^2+2x+5 is strictly increasing in the interval: a) (-1,infty) b) (-infty,-1) c) [-1,infty) d) (-infty,-1]

Show that the function f(x) = 1/(1+x^(2)) is increasing function in the interval (- infty, 0] .

The function f(x)=-2x^3+21x^2-60x+41 , in the interval (-infty,1) is

The function f(x)= [x(x-2)]^2 is increasing in the set a) (-infty,0) cup (2,infty) b) (-infty,1) c) (0,1)cup(2,infty) d) ( 1 , 2 )

The function f(x)=x^3-3x^2-24x+5 is an increasing function in the interval a) (-infty,-2) cup (4,infty) b) (-2,infty) c) (-2,4) d) (-infty,4)

The exhaustive values of x for which f(x) = tan^-1 x - x is decreasing is (i) (1,infty) (ii) (-1,infty) (iii) (-infty,infty) (iv) (0,infty)

Let f^(prime)(x)>0 AA x in R and g(x)=f(2-x)+f(4+x). Then g(x) is increasing in (i) (-infty,-1) (ii) (-infty,0) (iii) (-1,infty) (iv) none of these