Home
Class 12
PHYSICS
Two particle are moving perpendicular to...

Two particle are moving perpendicular to each with de-Broglie wave length `lambda_(1)` and `lambda_(2)`. If they collide and stick then the de-Broglie wave length of system after collision is : (A) `lambda = (lambda_(1) lambda_(2))/(sqrt(lambda_(1)^(2) + lambda_(2)^(2)))` (B) `lambda = (lambda_(1))/(sqrt(lambda_(1)^(2) + lambda_(2)^(2)))` (C) `lambda = (sqrt(lambda_(1)^(2) + lambda_(2)^(2)))/(lambda_(2))` (D) `lambda = (lambda_(1) lambda_(2))/(sqrt(lambda_(1) + lambda_(2)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan 82(1)/(2^(@))=sqrt(lambda_(1))+sqrt(lambda_(2))+sqrt(lambda_(3))+2 then lambda_(1)+lambda_(2)+lambda_(3) is equal to

If the matrix A = [[lambda_(1)^(2), lambda_(1)lambda_(2), lambda_(1) lambda_(3)],[lambda_(2)lambda_(1),lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]] is idempotent, the value of lambda_(1)^(2) + lambda_(2)^(2) + lambda _(3)^(2) is

If the matrix A = [[lambda_(1)^(2), lambda_(1)lambda_(2), lambda_(1) lambda_(3)],[lambda_(2)lambda_(1),lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]] is idempotent, the value of lambda_(1)^(2) + lambda_(2)^(2) + lambda _(3)^(2) is

If the matrix A = [[lambda_(1)^(2), lambda_(1)lambda_(2), lambda_(1) lambda_(3)],[lambda_(2)lambda_(1),lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]] is idempotent, the value of lambda_(1)^(2) + lambda_(2)^(2) + lambda _(3)^(2) is

If the matrix A = [[lambda_(1)^(2), lambda_(1)lambda_(2), lambda_(1) lambda_(3)],[lambda_(2)lambda_(1),lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]] is idempotent, the value of lambda_(1)^(2) + lambda_(2)^(2) + lambda _(3)^(2) is

If the matrix A = [[lambda_(1)^(2), lambda_(1)lambda_(2), lambda_(1) lambda_(3)],[lambda_(2)lambda_(1),lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]] is idempotent, the value of lambda_(1)^(2) + lambda_(2)^(2) + lambda _(3)^(2) is

The wavelength of electron waves in two orbits (lambda_(1) : lambda_(2))

If lambda_(1) and lambda_(2) denote the wavelength of de-broglie waves for electron in Bohr's first and second orbits in the hydrogen atom, then lambda_(1)//lambda_(2) will be

Two particles move at right angle to each other.Their de Broglie wavelengths are lambda_(1) and lambda_(2) respectively.The particles suffer perfectly inelastic collision.The de Broglie wavelength lambda of the final particle is given by :

Transition between three energy energy levels in a particular atom give rise to three Spectral line of wevelength , in increasing magnitudes. lambda_(1), lambda_(2) and lambda_(3) . Which one of the following equations correctly ralates lambda_(1), lambda_(2) and lambda_(3) ? lambda_(1)=lambda_(2)-lambda_(3) lambda_(1)=lambda_(3)-lambda_(2) (1)/(lambda_(1))=(1)/(lambda_(2))+(1)/(lambda_(3)) (1)/(lambda_(2))=(1)/(lambda_(3))+(1)/(lambda_(1))