Home
Class 12
MATHS
If x=sin t-t cos t and y = t sin t +cos ...

If `x=sin t-t cos t and y = t sin t +cos t,` then what is `(dy)/(dx)`
at point `t=(pi)/(2)?`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=a sin t, x=a cos t then find (dy)/(dx) .

If x = 2 cos t - cos 2 t and y =2 sin t - sin 2t, then (dy)/(dx) at t = (pi)/(2) is

If x=sin tcos 2t , y=cos t sin 2t ,then " at " t= (pi)/(4) ,(dy)/(dx)=

If x=a(cos t+t sin t) and y=a(sin t - t cos t), then (d^2y)/dx^2

If x=a sin t,y=b cos t, then (dy)/(dx)=

If x=2 cos t+cos 2t and y=2 sin t-sin2t , then the value of (dy)/(dx) at t=(pi)/(4) is -

If y=sin t -cos t and x=sin t+cost , then (dy)/(dx) at t=(pi)/(6) is :

If x= 3 sin t- sin (3t), y= 3 cos t- cos 3t , then find ((dy)/(dx)) " at " t= (pi)/(3)