Home
Class 11
MATHS
(1+i)^(5)(1-i)^(5)...

(1+i)^(5)(1-i)^(5)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (1+i)^(5)+(1+i^(3))^(5)+(1+i^(5))^(7)+(1+i^(7))^(7)

The value of (1+i) (1-i^(2)) (1+i^(4))(1-i^(5)) is

The value of (1+i) (1-i^(2)) (1+i^(4))(1-i^(5)) is

The value of (1+i)^5xx(1-i)^5 is

The value of (1+i)^5 xx (1-i)^5

Roots of the equation are (z+1)^(5)=(z-1)^(5) are (a)+-i tan((pi)/(5)),+-i tan((2 pi)/(5))(b)+-i cot((pi)/(5)),+-i cot((2 pi)/(5))(c)+-i cot((pi)/(5)),+-i tan((2 pi)/(5))(d)none of these

Express the result in the form x+iy, where x,y are real number i=sqrt(-1) : (i) (5+9i)-:(-3+4i) (ii) [(sqrt(5)+(i)/(2))(sqrt(5)-2i)]-:(6+5i) (iii) ((1-i)(2-i)(3-i))/(1+i) (iv) (1+3i)/((1-2i)^(2))

(1+i)^(5)(1+(1)/(i))^(5)=32

The value of (i^(5)+i^(6)+i^(7)+i^(8)+i^(9))/(1+i) is (1)/(2)(1+i)(b)(1)/(2)(1-i)(c)1(d)(1)/(2)