Home
Class 12
PHYSICS
One mole of an ideal gas goes through a ...

One mole of an ideal gas goes through a process in which the entropy of the gas changes with temperature `T` as `S = aT + C_V 1n T`, where `a` is a positive constant. `C_V` is the molar heat capacity of this gas at constant volume. Find the volume dependence of the gas temperature in this process if `T = T_0` at `V = V_0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

For an ideal monoatomic gas, molar heat capacity at constant volume (C_(v)) is

One mole of an ideal gas with heat capacity C_V goes through a process in which its entropy S depends on T as S = alpha//T , where alpha is a constant. The gas temperature varies from T_1 to T_2 Find : (a) the molar heat capacity of the gas as function of its temperature , (b) the amount of heat transferred to the gas , ( c) the work performed by the gas.

For one mole of an ideal gas (C_(p) and C_(v) are molar heat capacities at constant presure and constant volume respectively)

For certain process the molar heat capacity of an ideal gas is found to be (C_v+R/2) , where C_v is the molar heat capacity of the same gas at constant volume. For the given process, it can be concluded that

Two moles of an ideal mono-atomic gas undergoes a thermodynamic process in which the molar heat capacity 'C' of the gas depends on absolute temperature as C=(RT)/(T_(0)) , where R is gas consant and T_(0) is the initial temperature of the gas. ( V_(0) is the initial of the gas). Then answer the following questions: The equation of process is

Two moles of an ideal mono-atomic gas undergoes a thermodynamic process in which the molar heat capacity 'C' of the gas depends on absolute temperature as C=(RT)/(T_(0)) , where R is gas consant and T_(0) is the initial temperature of the gas. ( V_(0) is the initial of the gas). Then answer the following questions: The equation of process is

The molar heat capacity of a perfect gas at constant volume is C_v . The gas is subjected to a process T =T_0e^(AV) , Where T_0 and A are constant. Calculate the molar heat capacity of the gas a function of its volume

One mole of an ideal gas undergoes a process in which T = T_(0) + aV^(3) , where T_(0) and a are positive constants and V is molar volume. The volume for which pressure with be minimum is