Home
Class 14
MATHS
The simplest value of 1/(1xx2)+1/(2xx...

The simplest value of `1/(1xx2)+1/(2xx3)+1/(3xx4)+\ ddot+1/(9xx10)` is `1/(10)` (b) `9/(10)` (c) `1` (d) `10`

Promotional Banner

Similar Questions

Explore conceptually related problems

The simplest value of (1)/(1xx2)+(1)/(2xx3)+(1)/(3xx4)+backslash+(1)/(9xx10) is (1)/(10) (b) (9)/(10) (c) 1 (d) 10

Find the value of (1)/(2xx3)+(1)/(3xx4)+(1)/(4xx5)+(1)/(5xx6)+backslash+(1)/(9xx10)

((1)/(1xx4)+(1)/(4xx7)+(1)/(7xx10)+(1)/(10xx13)+(1)/(13xx16))=?

If A= 1/(1xx2)+1/(1xx4)+1/(2xx3)+1/(4xx7)+ 1/(3xx4)+1/(7xx10) ...... upto 20 terms, then what is the value of A? यदि 1/(1xx2)+1/(1xx4)+1/(2xx3)+1/(4xx7)+ 1/(3xx4)+1/(7xx10).....20 पदों तक हो, तो A का मान क्या है?

Find the value of n if 1/8+1/(9 xx 8!)=x/(10 xx 9 xx8!)

1/2xx 5/4 + 6/8 xx 10/9

(10xx1)+(10xx2)+…..+(10xx8) =