Home
Class 12
MATHS
sqrt(17-15x-2x^2)/(x+3)>=0...

`sqrt(17-15x-2x^2)/(x+3)>=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of f(x) = (sqrt(17-15 x-2x ^2))/(x+3) is

(17-15x-2x ^ (2)) / (x + 3) <0

(sqrt(2x^(2)+15x-17))/(10-x)>=0

If ((x-3)^((-|x|)/x) sqrt((x-4)^(2))(17-x))/(sqrt(-x)(-x^(2)+x-1)(|x|-32))lt0 then no. of integers x satisfying the inequality is:

(4) sqrt(3)x^(2)+2x-sqrt(3)=0

lim_(x rarr 0) (sqrt(2+x^(3)) - sqrt(2-x^(3)))/ x^(3) =

If x^2=sqrt(17-12sqrt2))+sqrt(3-2sqrt2))+sqrt(3+2sqrt2) then x=

x^(2)-(sqrt(3)+1)x+sqrt(3)=0 2x^(2)+x-4=0

The values of x satisfying the equation (31+8sqrt(15))^(x^(2)-3)+1=(32+8sqrt(15))^(x^(2)-3) is/are (A) 3 (B) 0 (C) 2 (D) -2