Home
Class 12
MATHS
If (a+be^y)/(a-be^y)= (b+ce^y)/(b-ce^y) ...

If `(a+be^y)/(a-be^y)= (b+ce^y)/(b-ce^y) = (c+de^y)/(c-de^y)` , then a, b,c ,d are in:

Promotional Banner

Similar Questions

Explore conceptually related problems

a^(x) = b^(y) = c^(z) = d^(t) and a,b,c,d are in G.P. , then x,y,z,t are in :

If (a+b)/(c+d)=(x)/(y) , then y=_____

If a^(x) = b^(y) = c^(z) = d^(t) and a ,b ,c d are in G.P . Then x, y, z, t are in

If a,b,c,d are in GP and a^x=b^y=c^z=d^u , then x ,y,z,u are in

If (log x)/(b-c)=(log y)/(c-a)=(log z)/(a-b), then which of the following is/are true? zyz=1 (b) x^(a)y^(b)z^(c)=1x^(b+c)y^(c+b)=1( d) xyz=x^(a)y^(b)z^(c)

If (a)/(x)+(y)/(b)=1 and (b)/(y)+(z)/(c)=1, then (x)/(a)+(c)/(z) will be equal to: (a) 0 (b) (b)/(y) (c) 1 (d) (y)/(b)

If x=(b-c)(a-d),y=(c-a)(b-d),z=(a-b)(c-d) , then the what is x^(3)+y^(3)+z^(3) equal to?

If (logx)/(b-c)=(logy)/(c-a)=(logz)/(a-b) , then which of the following is/are true? z y z=1 (b) x^a y^b z^c=1 x^(b+c)y^(c+b)=1 (d) x y z=x^a y^b z^c