Home
Class 9
MATHS
'O' is any point in the interior of a De...

'O' is any point in the interior of a `DeltaABC` prove that `AB + BC + CA > OA + OB + OC`

Promotional Banner

Similar Questions

Explore conceptually related problems

O is any point in the exterior of a DeltaABC . Prove that 2(OA + OB + OC) > (AB + BC + CA) .

O is any point in the exterior of a DeltaABC . Prove that 2(OA + OB + OC) > (AB + BC + CA) .

Let O be any point in the interior of DeltaABC , prove that : AB+BC+CA lt 2 (OA+OB+OC)

Let O be any point in the interior of DeltaABC , prove that : AB+BC+CA lt 2 (OA+OB+OC)

O is any point in the interior of a triangle ABC. Prove that : OB + OC lt AB + AC. _Q01.png" width="60%">

If 'O' is any point in the interior of rectangle ABCD, then prove that : OB^(2) + OD^(2) = OA^(2) + OC^(2)

In the given figure, O is a point in the interior of a DeltaABC, OD bot BC, OE bot AC" and "OF bot AB . Show that : OA^(2)+OB^(2)+OC^(2)-OD^(2)-OE^(2)-OF^(2)= AF^(2)+BD^(2)+CE^(2) .

O is any point in the interior of ABC .Prove that AB+AC>OB+OCAB+BC+CA>OA+OB+OCOA+OB+OC>(1)/(2)(AB+BC+CA)

If 'O' is any point in the interior of rectangle ABCD,then prove that: OB^2+OD^2=OA^2+OC^2 .

O' is any point in the interior of a triangle ABC. OD bot BC , OE bot AC and OF bot AB , Show that OA^2 + OB^2 + OC^2 overset(~)n OD^2 overset(~)n OF^2 = AF^2 + BD^2 + CE^2