Home
Class 12
MATHS
[" Let "(d)/(dx)F(x)=((e^(sin x))/(x)),x...

[" Let "(d)/(dx)F(x)=((e^(sin x))/(x)),x>0],[" If "int_(1)^(4)(3)/(x)e^(sin x^(3))dx=F(k)-F(1)" then one of the possible "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let (d)/(dx) F(x)=(e^(sin x))/(x), x gt 0 , If int_(1)^(4) (3)/(x) e^(sin x^(3))dx=F(k)-F(1) , then one of the possible value of k is -

Let (d)/(dx) F(x)=(e^(sin x))/(x), x gt 0 , If int_(1)^(4) (3)/(x) e^(sin x^(3))dx=F(k)-F(1) , then one of the possible value of k is -

Let (d)/(dx) f(x) = (e^(sin x))/(x) , x gt 0 . If int_(1)^(4) 3/x e^(sin(x^(3)))dx=F(k)-F(1) then one of the possible value of k is

Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int_1^4 3/x e^(sin x^3)dx=F(k)-F(1), then one of the possible values of k , is: 15 (b) 16 (c) 63 (d) 64

(d)/(dx) F(x) = (e^(sin x))/(x) , x gt 0 . If int_(1)^(4) (2e^(sin x^(2)))/(x) dx=F(K)-F(1) , then one of the possible values of K is :

Let (d)/(dx)(F(x))=(e^(sin x))/(x),x>0. If int_(1)^(4)2(e^(sin(x^(2))))/(x)dx=F(k)-F(1), then possible value of k is: