Home
Class 12
MATHS
If I(m,n)= int(sinx)^(m)(cosx)^(n)dx the...

If `I_(m,n)= int(sinx)^(m)(cosx)^(n)`dx then prove that `I_(m,n) = ((sinx)^(m+1)(cosx)^(n-1))/(m+n) +(n-1)/(m+n). I_(m,n-2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(m,n)=int x^(m)(logx)^(n)dx then I_(m.n)=

If I(m,n)=int_0^1x^(m-1)(1-x)^(n-1)dx , then

If I(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx, then

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

If I_(n) = int (sin nx)/(cosx)dx , prove that I_(n)=-(2)/(n-1)cos(n-1)x-I_(n-2)

If I_(m,n) - int (x^(m) (logx)^(n) dx then I_(m,n) - (x^(m+1))/((m + 1)) (logx)^(n) =

If I_(m,n)=int (x^(m))/((log x)^(n))dx then (m+1)I_(m,n)-n.I_(m,n+1)=