Home
Class 12
MATHS
The minimum value of the function f(x)=s...

The minimum value of the function `f(x)=sinx/(sqrt(1-cos^2x))+cosx/sqrt(1-sin^2x)+tanx/sqrt(1-sec^2x-1)+cotx/sqrt(1-cosec^2x-1)` whenever it is defined is

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of the function f(x)=sinx/(sqrt(1-cos^2x))+cosx/sqrt(1-sin^2x)+tanx/sqrt(sec^2x-1)+cotx/sqrt(cosec^2x-1) whenever it is defined is

The minimum value of the function f(x)=(sinx)/(sqrt(1-cos^2x))+(cosx)/(sqrt(1-sin^2x))+(tanx)/(sqrt(sec^2x-1))+(cotx)/(sqrt(c o s e c^2x-1)) whenever it is defined is

The minimum value of the function f(x)=(sinx)/(sqrt(1-cos^2x))+(cosx)/(sqrt(1-sin^2x))+(tanx)/(sqrt(sec^2x-1))+(cotx)/(sqrt(c o s e c^2x-1)) whenever it is defined is

The minimum value of the function f(x)=(sinx)/(sqrt(1-cos^(2)x))+(cosx)/(sqrt(1-sin^(2)x))+(tanx)/(sqrt(sec^(2)x-1))+(cotx)/(sqrt(cosec^(2)x-1)) whenever it is defined is

The minimum value of the function f(x)=(sinx)/(sqrt(1-cos^(2))x)+(cosx)/(sqrt(1-sin^(2)x))+(tanx)/(sqrt(sec^(2)x-1))+(cotx)/(sqrt(cosec^(2)x-1)) whenever it is defined is

The minimum value of the function f(x)=sinx/(sqrt(1-cos^2x))+cosx/sqrt(1-sin^2x) whenever it is defined is

The minimum value of the function f(x)=(sin x)/(sqrt(1-cos^(2)x))+(cos x)/(sqrt(1-sin^(2)x))+(tan x)/(sqrt(sec^(2)x-1))+(cot x)/(sqrt(csc^(2)x-1))

If the maximum and minimum values of (sin x)/(sqrt(1-cos^(2)))+(cos x)/(sqrt(1-sin^(2)x))+(tan x)/(sqrt(sec^(2)x-1))+(cot x)/(sqrt(cos ec^(2)-1)) when it is defined are M and m respectively then the values of M-m is

The domain of definition of the function f(x)=sqrt(3-2^(x)-2^(1-x))+sqrt(sin^(-1)x) is

The domain of definition of the function f(x)=sqrt(3-2^(x)-2^(1-x))+sqrt(sin^(-1)x) is