Home
Class 11
MATHS
If z is a complex number, then a. |z|^2>...

If `z` is a complex number, then a. `|z|^2>|z^2|` b. `|z|^2=|z^2|` c. `|z|^2<|z^2|` d. `|z|^2geq|z^2|`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z is a complex number,then |z|^(2)>|z|^(2) b.|z|^(2)=|z|^(2) c.|z|^(2) =|z|^(2)

If z_1 , and z_2 be two complex numbers prove that |z_1+z_2|^2+|z_1-z_2|^2=2[|z_1|^2+|z_2|^2]

If z is a complex number satisfying z^(4)+z^(3)+2 z^(2)+z+1=0 then |z|=

If z^2+z+1=0 where z is a complex number, then the value of (z+1/z)^2+(z^2+1/z^2)^2+....+(z^6+1/z^6)^2 is

If z^2+z+1=0 where z is a complex number, then the value of (z+1/z)^2+(z^2+1/z^2)^2+....+(z^6+1/z^6)^2 is

If z^2+z+1=0 where z is a complex number, then the value of (z+1/z)^2+(z^2+1/z^2)^2+....+(z^6+1/z^6)^2 is

Let z_(1) and z_(2) be two complex numbers such that |z_(1)+z_(2)|^(2)=|z_(1)|^(2)+|z_(2)|^(2) . Then,