Home
Class 11
MATHS
Let f(x)=(x^2-9x+20)/(x-[x]) (where [x] ...

Let `f(x)=(x^2-9x+20)/(x-[x])` (where `[x]` is the greatest integer not greater than `xdot` Then `("lim")_(xvec5)f(x)=1` `("lim")_(xvec5)f(x)=0` `("lim")_(xvec5)f(x)doe snote xi s t` none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(x^2-9x+20)/(x-[x]) (where [x] is the greatest integer not greater than xdot Then (a) ("lim")_(xvec5)f(x)=1 (b) ("lim")_(xvec5)f(x)=0 (c) ("lim")_(xvec5)f(x)does not exist (d)none of these

Let f(x)=(x^2-9x+20)/(x-[x]) (where [x] is the greatest integer not greater than xdot Then (A) ("lim")_(x->5)f(x)=1 (B) ("lim")_(x->5)f(x)=0 (C) ("lim")_(x->5)f(x) does not exist. (D)none of these

Let f(x)=(x^2-9x+20)/(x-[x]) (where [x] is the greatest integer not greater than xdot Then (A) ("lim")_(x->5)f(x)=1 (B) ("lim")_(x->5)f(x)=0 (C) ("lim")_(x->5)f(x) does not exist. (D)none of these

Let f(x)=(x^(2)-9x+20)/(x-[x]) (where [x] is the greatest integer not greater than x. Then lim_(x rarr5)f(x)=1lim_(x rarr5)f(x)=0lim_(x rarr5)f(x)does not exist none of these

Lim x tending 5f(x) = (x^2-9x+20)/(x-[x]) where [x] denotes greatest integer less than or equal to x ), then

Given ("lim")_(xvec0)(f(x))/(x^2)=2, \where\ [dot] denotes the greatest integer function, then (A) ("lim")_(xvec0)[f(x)]=0 (B) ("lim")_(xvec0)[f(x)]=1 (C) ("lim")_(xvec0)[(f(x))/x] does not exist (D) ("lim")_(xvec0)[(f(x))/x] exists

Given ("lim")_(xvec0)(f(x))/(x^2)=2,w h e r e[dot] denotes the greatest integer function, then (a) ("lim")_(xvec0)[f(x)]=0 (b) ("lim")_(xvec0)[f(x)]=1 (c) ("lim")_(xvec0)[(f(x))/x] does not exist (d) ("lim")_(xvec0)[(f(x))/x] exists

If f(x)=|x-1|-[x],w h e r e[x] is the greatest integer less then or equal to x , then a. f(1+0)-1,f(1-0)=0 b. f(1+0)=0=f(1-0) c. ("lim")_(xvec1)f(x)e xi s t s d. ("lim")_(xvec1)f(x)doe snote xi s t

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represents the greatest integer function) (lim)_(xvec0^+)f(x)=-1 b. (lim)_(xvec0^-)f(x)=0 c. (lim)_(xvec0^)f(x)=-1 d. (lim)_(xvec0^)f(x)=0

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represents the greatest integer function) (lim)_(xvec0^+)f(x)=-1 b. (lim)_(xvec0^-)f(x)=0 c. (lim)_(xvec0^)f(x)=-1 d. (lim)_(xvec0^)f(x)=0