Home
Class 12
MATHS
A=[[-i,0] , [0,-i]] then A^(23)=...

`A=[[-i,0] , [0,-i]]` then `A^(23)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[i,0], [0,i]] , write A^2 .

1.If A=[[i,0],[0,-i]] then show that A^(2)=-I

If A=[[i, 0], [0, (i)/(2)]] , then A^(-1)=

If A=[[0,1],[1,0]],B=[[0,-i],[i,0]] and C=[[i,0],[0,-i]] , show that A^2=B^2=-C^2=I_2 and AB=-BA,AC=-CA and BC=-CB .

If A=[[0,1],[1,0]],B=[[0,-i],[i,0]] and C=[[i,0],[0,-i]] , show that A^2=B^2=-C^2=I_2 and AB=-BA,AC=-CA and BC=-CB .

If A=[[i,0],[0,i]];i=sqrt(-1), then A^(n) is equal to

If I=[[1,0],[0,1]] , then I^4=

If A=[(i,0),(0,i)] then find A^(2) .

If P= [[i,0,-i],[0,-i,i],[-i,i,0]], Q= [[-i,i],[0,0],[i, -i]] then P Q=