Home
Class 11
MATHS
Show that f(x)=(1)/sqrt(x-|x|) is not de...

Show that `f(x)=(1)/sqrt(x-|x|)` is not defined for any `x""inR`. How will you define dom (f) and range (f)?

Promotional Banner

Similar Questions

Explore conceptually related problems

If f (x) =(1)/(sqrt(5x -7)), then dom (f) =

If f (x) =(1)/(sqrt(5x -7)), then dom (f) =

If f(x)=(x-5)/(5-x) then find dom (f) and range (f).

If f(x)=sqrt(1+x)-3sqrt(4-x) , then f(x) is defined when x lies in

Let f(x) sqrt((x-1)/(x-4)) . Then dom (f ) =?

Let f(x) = x^(3). Then, dom (f ) and range (f ) are respectively

Let f(x)=sqrt(cos x). Then dom (f ) =?

Let f(x) =(sin^(-1)x)/(x). " then dom " (f ) =?

Let f(x) =x^(2). Then dom (f ) and range (f ) are respectively

Let f(x) = (x)/((x^(2) -1)) Then dom (f ) =?