Home
Class 11
MATHS
The area (in square units ) of the quadr...

The area (in square units ) of the quadrilateral formed by two pairs of lines `l^(2) x^(2) - m^(2) y^(2) - n (lx + my) = 0` and `l^(2) x^(2)- m^(2) y^(2) + n (lx - my ) = 0` , is

Promotional Banner

Similar Questions

Explore conceptually related problems

The area of the quadrilateral formed by two pairs of lines l^(2) x^(2)-m^(2) y^(2)-n(l x+m y)=0 and l^(2) x^(2)-m^(2) y^(2)-n(L x-m y)=0 is

Find the area (in square units) of the quadrilateral formed by the two pairs of lines l^2x^2-m^2y^2-n(lx+my)=0 and l^2x^2-m^2y^2+ n(lx-my) = 0

If x/(lm - n^(2)) = y/(mn - l^(2)) = z/(nl - m^(2)) , then show that lx + my + nz = 0 .

If lx+ my = 1 is a normal to the hyperbola (x^(2))/(a^(2)) - (y^(2))/(b^(2)) = 1, "then" a^(2) m^(2) - b^(2) l^(2) =

If x/(lm - n^(2)) = y/(mn - l^(2)) = z/(nl-m^(2)) , then prove that lx + my + nz = 0 .

Find the condition for the line lx + my + n =0 is a tangent to the circle x^(2) + y^(2) = a^(2)

The perfect square form of the quadratic equation lx^(2)+mx+n=0(l""ne0) is (x+(m)/(2l))^(2)=(m^(2)+4lm)/(4l^(2))

If the straight line lx+my+n=0 touches the : hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , show that a^(2) l^(2)-b^(2)m^(2)=n^(2) .

If the line lx+my+n=0 s a tangent to the hyperboal (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , then show that a^(2)l^(2)-b^(2)m^(2)=n^(2)