Home
Class 11
MATHS
if y=log(e^(2x)+sqrt(1+e^(4x))) and y1sq...

if `y=log(e^(2x)+sqrt(1+e^(4x)))` and `y_1sqrt(1+e^(4x))=me^(mx)` then `m=`

Promotional Banner

Similar Questions

Explore conceptually related problems

if y=log(e^(2x)+sqrt(1+e^(4x))) and y_(1)sqrt(1+e^(4x))=me^(mx) then m=

If y=log(x^(2)+sqrt(x^(4)-a^(4)))," then "y_(1)sqrt(x^(4)-a^(4))=

If int(1)/(sqrt(e^(4x)-36))dx=m.tan^(-1)[n.sqrt(e^(4x)-36)]+c , then : (m, n)-=

If : y=sqrt((1+e^(x))/(1-e^(x)))," then: "(dy)/(dx)=

If : y=sqrt((1+e^(x))/(1-e^(x)))," then: "(dy)/(dx)=

Evaluate: int1/(sqrt(e^(5x))(4sqrt(e^(2x)+e^(-2x))^3 )

Statement -1 : If I_(1)=int(e^(x))/(e^(4x)+e^(2x)+1)dx and I_(2)=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx , then I_(2)-I_(1)=(1)/(2)log((e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1))+C where C is an arbitrary constant. Statement -2 : A primitive of f(x) =(x^(2)-1)/(x^(4)+x^(2)+1) is (1)/(2)log((x^(2)-x+1)/(x^(2)+x+1)) .

Statement -1 : If I_(1)=int(e^(x))/(e^(4x)+e^(2x)+1)dx and I_(2)=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx , then I_(2)-I_(1)=(1)/(2)log((e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1))+C where C is an arbitrary constant. Statement -2 : A primitive of f(x) =(x^(2)-1)/(x^(4)+x^(2)+1) is (1)/(2)log((x^(2)-x+1)/(x^(2)+x+1)) .

(d)/(dx)[log((e^(4x))/(1+e^(4x)))]