Home
Class 9
MATHS
1/(2+sqrt(3))+2/(sqrt(5)-sqrt(3))+1/(2-s...

`1/(2+sqrt(3))+2/(sqrt(5)-sqrt(3))+1/(2-sqrt(5))=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify: (7+3sqrt(5))/(3+sqrt(5))-(7-3sqrt(5))/(3-sqrt(5)) (ii) (1)/(2+sqrt(3))+(2)/(sqrt(5)-sqrt(3))+(1)/(2-sqrt(5))

Simplify: (i) (7+3\ sqrt(5))/(3+\ sqrt(5))-(7-3\ sqrt(5))/(3-\ sqrt(5)) (ii) 1/(2+sqrt(3)\ )+2/(sqrt(5)-\ sqrt(3))+1/(2-\ sqrt(5))

Simplify the following 1/(2+sqrt3)+2/(sqrt5-sqrt3)+1/(2-sqrt5)

1/(sqrt(3)+sqrt(2))-2/(sqrt(5)-sqrt(3))-3/(sqrt(2)-sqrt(5))

(1)/(2sqrt(5)-sqrt(3))-(2sqrt(5)+sqrt(3))/(2sqrt(5)+sqrt(3)) =

(1)/(sqrt(2)+sqrt(3))-(2)/(sqrt(5)-sqrt(3))+(3)/(sqrt(5)-sqrt(2))=

Show that (1)/(sqrt(2)+sqrt(3))-(2)/(sqrt(5)-sqrt(3))+(3)/(sqrt(5)-sqrt(2))=0 .

(1)/(sqrt(3)+sqrt(2))-(2)/(sqrt(5)-sqrt(3))-(3)/(sqrt(2)-sqrt(5))

Simplify: (i) (3sqrt(2)-2sqrt(2))/(3sqrt(2)+\ 2sqrt(3))+(sqrt(12))/(sqrt(3)-\ sqrt(2)) (ii) (sqrt(5)+\ sqrt(3))/(sqrt(5)-\ sqrt(3))+(sqrt(5)-\ sqrt(3))/(sqrt(5)+\ sqrt(3))

If sqrt(2) = 1.414, sqrt(3) = 1.732, sqrt(5) = 2.236 and sqrt(6) = 2.449 , find the value of (2+sqrt(3))/(2-sqrt(3)) +(2-sqrt(3))/(2+sqrt(3)) +(sqrt(3) -1)/(sqrt(3) +1)