Home
Class 12
MATHS
The value of int0^(2pi)[2 sin x] dx, w...

The value of `int_0^(2pi)[2 sin x] dx`, where `[.]` represents the greatest integral functions, is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2 pi)[2sin x]dx, where [.] represents the greatest integral function,is (a) (-5 pi)/(3)(b)-pi(c)(5 pi)/(3)(d)-2 pi

The value of int_x^(2pi) [2 sin x] dx, where [x] represents the greatest integer function, is :

The value of int_(pi)^(2pi) [ 2 sin x] dx, where [] repreents the greatest integer function, is

The value of int_(pi)^(2 pi)[2sin x]dx where [.] represents the greatest integer function is

The value of int_(pi)^(2 pi)[2cos x]dx where [.] represents the greatest integer function is -

The value of int_(pi)^(2pi)[2sinx]dx is equal to (where [.] represents the greatest integer function)

The value of int_(pi)^(2pi)[2sinx]dx is equal to (where [.] represents the greatest integer function)

The value of int_(0)^(2pi)[sin 2x(1+cos 3x)]dx , where [t] denotes the greatest integer function, is:

Evaluate: int_(0)^(2 pi)[sin x]dx, where [.] denotes the greatest integer function.