Home
Class 12
MATHS
lim(x->0)(e^x-loge(e x+e))/x...

`lim_(x->0)(e^x-log_e(e x+e))/x`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x to 0)(e^(x)-log(e+ex))/(x) is -

lim_(x rarr0)(e^(x)-log(ex+e))/(x)

lim_(x->oo)[x-log_e((e^x+e^(-x))/2)]= a) (log)_e4 b. 0 c. oo d. (log)_e2

Find the value of lim_(xrarr0)(e^x-e^(-x))/x

Evaluate : lim_(xto0) (e^(x) -e^(-x))/x

The value of lim_(x->oo)((log)_e((log)_e x)/(e^(sqrt(x)))i s___________

Evaluate : lim_(x to 0) (e^(x) -e^(x))/x

lim_(x rarr0)(log_(e)(1+x))/(x)

lim_(x to 0) (e^(13x)-e^(7x))/x

Evaluate: lim_(x to 0)(e^(4x)-e^(-x))/(x)