Home
Class 12
MATHS
Find the minimum value of the expression...

Find the minimum value of the expression `f(x) = Ax^2 + Bx + C` whose zeroes are `beta and beta + 2` which can be obtained by the relation `beta = [2alpha - 1]` (where [.] denote the greatest integer function) and `alpha = lim_(x rarr 0)(1-cos(1- cosx))/x^4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha and beta be the roots of the equation ax^(2)+bx+c=0 then lim_(x rarr beta)(1-cos(ax^(2)+bx+c))/((x-beta)^(2))

Let alpha,beta,gamma be the roots of f(x)=0, where f(x)=x^3+x^2-5x-1 . Then [alpha]+[beta]+[gamma] is, where [.] is greatest integer function

If the value of the integral int_0^5 (x + [x])/(e^(x - [x])) dx = alphae^(-1) + beta ,where alpha, beta in R, 5alpha + 6beta = 0, and [x] denotes the greatest integer less than or equal to x, then the value of (alpha + beta )^2 is equal to :

If alpha, beta are the zeros of the polynomial f(x) = x^2 – 3x + 2 , then find 1/alpha + 1/beta .

If alpha and beta are the zeroes of x^2 - 8x + 1 , then the value of 1/alpha +1/beta - alpha beta is :

If alpha, beta are the zeroes of ax^2+ bx +c , then evaluate : lim_(x rarr beta)(1-cos (ax^2 +bx +c) )/((x-beta)^2) .

If alpha and beta are the zeros of the polynomial f(x) = 4x^2 - 5x +1 , find a quadratic polynomial whose zeros are alpha^(2)/beta and beta^(2)/alpha

If alpha and beta are zeros of x^(2) - 2x + 3 , find a polynomial whose zeros are : i] alpha +2, beta + 2 ii] (alpha - 1)/( alpha + 1) , (beta - 1)/( beta + 1)