Home
Class 12
MATHS
Let f(x) = 1 - x - 4x^3, f: RR rarr RR t...

Let `f(x) = 1 - x - 4x^3, f: RR rarr RR` then find the number of integral values of `x in [0, 4]` satisfying the inequality `4f(x)^3 + f(1 - 2x) + f(x) lt1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=1-x-x^3 .Find all real values of x satisfying the inequality, 1-f(x)-f^3(x)>f(1-5x)

Let f(x)=1-x-x^3 .Find all real values of x satisfying the inequality, 1-f(x)-f^3(x)>f(1-5x)

Let f(x)=1-x-x^3 .Find all real values of x satisfying the inequality, 1-f(x)-f^3(x)>f(1-5x)

Let f(x)=1-x-x^(3) .Find all real values of x satisfying the inequality,1-f(x)-f^(3)(x)>f(1-5x)

If f: RR^(+) rarr RR ^(+) is a polynomial function satisfying the functional equation f{f(x)}=6x-f(x) , then f(17) is equal to ___

Let f: RR to RR be defined by f(x)=1 -|x|. Then the range of f is

The number or linear functions f satisfying f(x+f(x))=x+f(x) AA x in RR is

The number or linear functions f satisfying f(x+f(x))=x+f(x) AA x in RR is

The number or linear functions f satisfying f(x+f(x))=x+f(x) AA x in RR is