Home
Class 11
PHYSICS
Two waves passing through a region are r...

Two waves passing through a region are represented by `y=(1.0cm) sin [(3.14 cm^(-1))x - (157s^(-1) x - (157s^(-1))t]`
and `y = (1.5 cm) sin [(1.57 cm^(-1))x- (314 s^(-1))t].` Find the displacement of the particle at x = 4.5 cm at time t = 5.0 ms.

Promotional Banner

Similar Questions

Explore conceptually related problems

Two waves passing through a region are represented by y=(1.0cm) sin [(3.14 cm^(-1))x - (157s^(-1))t] and y = (1.5 cm) sin [(1.57 cm^(-1))x- (314 s^(-1))t]. Find the displacement of the particle at x = 4.5 cm at time t = 5.0 ms.

Two waves passing through a region are represented by y=(1.0cm) sin [(3.14 cm^(-1))x - (157s^(-1))t] and y = (1.5 cm) sin [(1.57 cm^(-1))x- (314 s^(-1))t]. Find the displacement of the particle at x = 4.5 cm at time t = 5.0 ms.

Two waves passing through a region are represented by y = ( 1.0 m) sin [( pi cm^(-1)) x - ( 50 pi s^(-1))t] and y = ( 1.5 cm) sin [( pi //2 cm^(-1)) x - ( 100 pi s^(-1)) t] . Find the displacement of the particle at x = 4.5 cm at time t = 5.0 ms .

Two waves passing through a region are respresented by y_(1) = 5 mm sin [(2pi cm^(-1))x - (50 pis^(-1))t] and y_(2) = 10 mm sin [(pi cm^(-1))x - (100 pis^(-1))t] Find the displacement of the particle at x = 1 cm at time t = 5.0 ms .

Two waves passing through a region are respresented by y_(1) = 5 mm sin [(2pi cm^(-1))x - (50 pis^(-1))t] and y_(2) = 10 mm sin [(pi cm^(-1))x - (100 pis^(-1))t] Find the displacement of the particle at x = 1 cm at time t = 5.0 ms .

The equation for a wave travelling in x-direction 0n a string is y = (3.0 cm) sin [(3.14 cm^(-1) x -(314 s^(-1)t] (a) Find the maximum velocity of a particle of the string. (b) Find the acceleration of a particle at x = 6.0 cm at time t = 0.11 s

The equation for a wave travelling in x-direction 0n a string is y = (3.0 cm) sin [(3.14 cm^(-1) x -(314 s^(-1)t] (a) Find the maximum velocity of a particle of the string. (b) Find the acceleration of a particle at x = 6.0 cm at time t = 0.11 s

The equation for a wave travelling in x-direction on a string is y = (3.0cm)sin[(3.14 cm^(-1) x - (314s^(-1))t] (a) Find the maximum velocity of a particle of the string. (b) Find the acceleration of a particle at x =6.0 cm at time t = 0.11 s.

The equation for a wave travelling in x-direction on a string is y =(3.0cm)sin[(3.14 cm^(-1) x - (314s^(-1))t] (a) Find the maximum velocity of a particle of the string. (b) Find the acceleration of a particle at x =6.0 cm at time t = 0.11 s.