Similar Questions
Explore conceptually related problems
Recommended Questions
- If x=a(cost+logtant/2) , y=asint , evaluate (d^2y)/(dx^2) at t=pi/3 .
Text Solution
|
- Find (dy)/(dx) , if x=a(cost+logtant/2) , y=asint
Text Solution
|
- यदि x=a[cost+1/2logtan^(2)t/2] और y=asint, तब (dy)/(dx) ज्ञात कीजिए।
Text Solution
|
- (dy)/(dx) ज्ञात कीजिए जबकि - x=(cost+logtant/2),y=asint
Text Solution
|
- dy/dx নির্ণয় করো:x=a(cost+logtan"t/2), y=asint
Text Solution
|
- If x=a(cost+logtant//2),y=asint, then (dy)/(dx)=
Text Solution
|
- If x=asint\ and y=a(cost+logtan(t/2)) , find (d^2\ y)/(dx^2)
Text Solution
|
- If x=a(cost+1/2logtan^2t) and y=asint then find (dy)/(dx) at t=pi/4
Text Solution
|
- If x=a(cost+1/2logtan'(t)/(2) and y=asint then find (dy)/(dx) at t=pi/...
Text Solution
|