Home
Class 12
MATHS
If x=a(cost+logtant/2) , y=asint , evalu...

If `x=a(cost+logtant/2)` , `y=asint` , evaluate `(d^2y)/(dx^2)` at `t=pi/3` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a(cost+logtan(t/2)) , y=asint , evaluate (dy)/(dx) .

If x=a(cos t+(log tan t)/(2)),y=a sin t evaluate (d^(2)y)/(dx^(2)) at t=(pi)/(3)

If x=a(cos t + log tan (t/2)),y=a sin t , then what is (d^2y)/(dx^2) at t=(pi)/3 .

If x=a(cost+logtant//2),y=asint, then (dy)/(dx)=

If x=a(cost+1/2logtan'(t)/(2) and y=asint then find (dy)/(dx) at t=pi/4

If x=cost+logtan(t/2),\ \ y=sint , then find the value of (d^2y)/(dt^2) and (d^2y)/(dx^2) at t=pi/4 .

If x=cos t + (log tant)/2, y=sin t, then find the value of (d^2y)/(dt^2) and (d^2y)/(dx^2)  at t =pi/4.

If x=a(cost+1/2logtan^2t) and y=asint then find (dy)/(dx) at t=pi/4

If x=a(cost+1/2logtan^2t) and y=asint then find (dy)/(dx) at t=pi/4