Home
Class 11
MATHS
Prove by combinatorial argument that .^(...

Prove by combinatorial argument that `.^(n+1)C_r=^n C_r+^n C_(r-1)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that combinatorial argument that ^n+1C_r=^n C_r+^n C_(r-1)dot

Prove that combinatorial argument that ""^(n+1)C_r=^n C_r+^n C_(r-1)""

Prove that n.^(n-1)C_(r-1)=(n-r-1) ^nC_(r-1)

Prove that .^(n)C_(r)+^(n)C_(r-1)=^(n+1)C_(r)

Prove that .^(n+1)C_(r+1)+^nC_r+^nC_(r-1)=^(n+2)C_(r+1)

If 1lt=rlt=n , then \ n^(n-1)C_r_ _1 =(n-r+1)\ ^n C_(r-1)dot

Prove that ""^nC_r+^nC_(r-1)=^(n+1)C_r

If 1<=r<=n, then n^(n-1)C_(r)=(n-r+1)^(n)C_(r-1)

Prove that "^n C_r+^(n-1)C_r+...+^r C_r=^(n+1)C_(r+1) .

Prove that "^n C_r+^(n-1)C_r+...+^r C_r=^(n+1)C_(r+1) .