Home
Class 12
MATHS
|f(x) - f(y)| lt= 2 |x-y|^(3//2); f(0) =...

`|f(x) - f(y)| lt= 2 |x-y|^(3//2); f(0) = 1,` then `int_0^1 f^2(x)\ dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

|f(x)-f(y)|<=2|x-y|^(3/2);f(0)=1, then int_(0)^(1)f^(2)(x)backslash dx

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

Let f be a differentiable function from R to R such that |f(x) - f(y) | le 2|x-y|^(3/2), for all x, y in R . If f(0) =1, then int_(0)^(1) f^(2)(x) dx is equal to

If f be decreasing continuous function satisfying f(x + y) = f(x) + f(y)-f(x) f(y) Y x, y epsilon R ,f'(0)=1 then int_0^1 f(x)dx is

If f(x) is a quadratic polynomial such that f(0) = 2, f(0) = -3 and f'(0) = 4 , then int_(-1)^(1) f(x) dx equals:

If int_0^1 f(x) dx = 1, int_0^1 xf(x) dx = a, int_0^1 x^2 f(x) dx = a^2 , then int_0^1 (a - x)^2 f(x) dx is equal to :

If |f(x)-f(y)|<=2|x-y|^((3)/(2))AA x,y in R and f(0)=1 then value of int_(0)^(1)f^(2)(x)dx is equal to (a) 1 (b) 2 (c) sqrt(2)(d)4

If int_0^1 f(x) dx = 4 , int_0^2 f(t) dt = 2 and int_4^2 f(u) du = 1 then int_1^4 f(x) dx = ____