Home
Class 11
MATHS
An extremum value of the function f(x)=(...

An extremum value of the function `f(x)=(a r csinx)^3+(a r ccosx)^3` is `(7pi^3)/8` (b) `(pi^3)/8` (c) `(pi^3)/(32)` (d) `(pi^3)/(16)`

Promotional Banner

Similar Questions

Explore conceptually related problems

An extremum value of the function f(x)=(arc sin x)^(3)+(arc cos x)^(3) is (7 pi^(3))/(8) (b) (pi^(3))/(8)(c)(pi^(3))/(32)(d)(pi^(3))/(16)

The minimum value of function f(x) = 8^(sin^(-1)x)+8^(cos^(-1)x) is a) 2^(1+pi/4) b) 2^(-1+(3pi)/4) c) 2^(1+(3pi)/4) d) 2^(-1+(pi)/2)

The period of the function f(x)=abs(sinx)+abs(cosx) is a) 2pi b) 3pi c) (3pi)/2 d) pi/2

The least and the greatest values of (sin^(-1)x)^3+(cos^(-1)x)^3 are (a) (-pi)/2,pi/2 (b) (-pi^3)/8,(pi^3)/8 (c) (pi^3)/(32),(7pi^3)/8 (d) none of these

The least and the greatest values of (sin^(-1)x)^3+(cos^(-1)x)^3 are (a) (-pi)/2,pi/2 (b) (-pi^3)/8,(pi^3)/8 (c) (pi^3)/(32),(7pi^3)/8 (d) none of these

The function f(x)=sin^4x+cos^4x increasing if 0

The least and the greatest values of (sin^(-1)x)^3+(cos^(-1)x)^3 are (-pi)/2,pi/2 (b) (-pi^3)/8,(pi^3)/8 (pi^3)/(32),(7pi^3)/8 (d) none of these

The least and the greatest values of (sin^(-1)x)^(3)+(cos^(-1)x)^(3) are (a) (-pi)/(2),(pi)/(2) (b) (-pi^(3))/(8),(pi^(3))/(8)(c)(pi^(3))/(32),(7 pi^(3))/(8) (d) none of these

The area in the first quadrant between x^2+y^2=pi^2 and y=sinx is (a) ((pi^(3)-8))/(4) (b) (pi^(3))/(4) (c) ((pi^(3)-16))/(4) (d) ((pi^(3)-8))/(2)

The value of a for which the function f(x)=asinx+1/3sin3x has an extremum at x=pi/3 is