Home
Class 12
MATHS
f(x)=sqrt((log(2)(x-2))/(log(1/2)(3x-1))...

f(x)=sqrt((log_(2)(x-2))/(log_(1/2)(3x-1)))

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=sqrt((log_(0.3)(x-1))/(x^(2)-3x-18)) is

log_(2)(x+1)-log_(2)(3x-1)=2

The number of integers in the domain of f(x)=sqrt(log_(2)(log_(3)(log_((1)/(4))x))) is

The domain of the function f(x)=sqrt(log_(2)((1)/(log_(2)x))) is given by

Solve: 27^(log_(3)root(3)(x^(2)-3x+1) )=(log_(2)(x-1))/(|log_(2)(x-1)|) .

Solve: 27^(log_(3)root(3)(x^(2)-3x+1) )=(log_(2)(x-1))/(|log_(2)(x-1)|) .

Solve: 27^(log_(3)root(3)(x^(2)-3x+1) )=(log_(2)(x-1))/(|log_(2)(x-1)|) .

Solve: 27^(log_(3)root(3)(x^(2)-3x+1) )=(log_(2)(x-1))/(|log_(2)(x-1)|) .

f(x)=sqrt(log((3x-x^(2))/(x-1)))

f(x)=sqrt(log((3x-x^(2))/(x-1)))