Home
Class 11
MATHS
" In any "Delta ABC," Prove that "b^(2)s...

" In any "Delta ABC," Prove that "b^(2)sin2C+c^(2)sin2B=2bc sin A

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, prove that b^(2) sin 2C+c^(2) sin 2B=2bc sin A .

In triangle ABC , prove that b^2sin2C+c^2sin2B=2bcsinA .

In Delta ABC,b^(2)sin2C+c^(2)sin2B=

In any triangle ABC, prove that : b^2 sin 2C + c^2 sin 2B = 2 bc sin A .

In any triangle ABC show that b^2sin2C+c^2sin 2B=abc/R

In any Delta ABC, prove that :(a^(2)sin(B-C))/(sin B+sin C)+(b^(2)sin(C-A))/(sin C+sin A)+(c^(2)sin(A-B))/(sin A+sin B)=0

In a Delta ABC, prove that (a^(2) - c^(2))/(b^(2)) = (sin (A - C))/(sin(A + C))

In any Delta ABC, prove that :(b^(2)-c^(2))/(a^(2))=(sin(B-C))/(sin(B+C))

In any Delta ABC, prove that :2(a sin^(2)((C)/(2))+c sin^(2)((A)/(2)))=a+c-b

In a Delta ABC, prove that a sin ((A)/(2) + B) = (b + c) sin ""(A)/(2)