Home
Class 12
MATHS
2tan^(-1)(1)/(5)+tan^(-1)(1)/(4)=tan^(-1...

2tan^(-1)(1)/(5)+tan^(-1)(1)/(4)=tan^(-1)(32)/(43)

Promotional Banner

Similar Questions

Explore conceptually related problems

2tan^(-1)((1)/(5))+tan^(-1)((1)/(8))= tan^(-1)((4)/(7))

Prove that : tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)

Prove that 2tan^(-1)""(1)/(5)+tan^(-1)""(1)/(8)=tan^(-1)""(4)/(7)

Prove the following: 4tan^(-1)(1)/(5)-tan^(-1)(1)/(70)+tan^(-1)(1)/(99)=(pi)/(4)2tan^(-1)(1)/(5)+sec^(-1)(5sqrt(2))/(7)+2tan^(-1)(1)/(8)=(pi)/(4)

Prove that : 2 tan^-1(1/5) + tan^-1(1/4) = tan^-1(32/43)

Solve the following equation for x:tan^(-1)((1)/(4))+2tan^(-1)((1)/(5))+tan^(-1)((1)/(6))+tan^(-1)((1)/(x))=(pi)/(4)

2tan^(-1)((1)/(5))+tan^(-1)((1)/(7))+2tan^(-1)((1)/(8))=

Prove that tan^(-1)((1)/(5)) +tan^(-1)((1)/(7)) +tan^(-1)((1)/(3)) +tan^(-1)((1)/(8)) = (pi)/(4) .

Prove that: tan^(-1)((1)/(5))+tan^(-1)((1)/(7))+tan^(-1)((1)/(3))+tan^(-1)((1)/(8))=(pi)/(4)

Prove that : tan^(-1)((1)/(2))+tan^(-1)((1)/(5))+tan^(-1)((1)/(8))=(pi)/(4)