Home
Class 12
MATHS
Prove that the matrix A=[[(1+i)/2,(-1+i)...

Prove that the matrix A=`[[(1+i)/2,(-1+i)/2],[(1+i)/2,(1-i)/2]]` is unitary.

Text Solution

Verified by Experts

`A^(theta)={:[((1-i)/(2),(1-i)/(2)),((-1-i)/(2),(1+i)/(2))]:}`
From `A^(theta)A={:[((1-i)/(2),(1-i)/(2)),((-1-i)/(2),(1+i)/(2))]{:[((1+i)/(2),(-1+i)/(2)),((1+i)/(2),(1-i)/(2))]:}`
`={:[((1-i^(2))/(4)+(1-i^(2))/(4),(-(1-i)^(2))/(4)+((1-i)^(2))/(4)),(-(1+i)^(2)/(4)+((1+i)^(2))/(4),(1-i^(2))/(4)+(1-i^(2))/(4))]:}`
`={:[((2)/(4)+(2)/(4),0),(0,(2)/(4)+(2)/(4))]:}={:[(1,0),(0,1)]:}=l`
Thus A is unitary
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE|Exercise Example 22|1 Videos
  • MATRICES

    AAKASH INSTITUTE|Exercise Example 23|1 Videos
  • MATRICES

    AAKASH INSTITUTE|Exercise Example 20|1 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

((1-i)/(1+i))^2=

Verify that the matrix (1)/sqrt3[(1,1+i),(1-i,-1)] is unitary, where i=sqrt-1

(1+2i)/(1-(1-i)^2)

the matrix A=[(i,1-2i),(-1-2i,0)], where I = sqrt-1, is

((1+i)/(1-i))^(2) + ((1-i)/(1+i))^(2) is equal to :

((1+2i)^(3))/((1+i)(2-i))

Find x and y i the matrix A= 1/3 [[1,2,2],[2,1,-2],[x,2,y]] satisfythe condition A A\'=A\'A=I_3

1+(1+i)+(1+i)^(2)+(1+i)^(3)=