Home
Class 12
MATHS
If A={:[(1,0),(1,1)]:},"then "A^(2008) i...

If `A={:[(1,0),(1,1)]:},"then "A^(2008)` is equal to

A

`{:[(2008,0),(1,1)]:}`

B

`{:[(1,0),(2008,1)]:}`

C

`{:[(1,0),(1,2008)]:}`

D

`2007{:[(1,0),(1,1)]:}`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^{2008} \) where \( A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \), we can follow these steps: ### Step 1: Calculate \( A^2 \) We start by multiplying matrix \( A \) by itself: \[ A^2 = A \times A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + 0 \cdot 1 = 1 \) - First row, second column: \( 1 \cdot 0 + 0 \cdot 1 = 0 \) - Second row, first column: \( 1 \cdot 1 + 1 \cdot 1 = 2 \) - Second row, second column: \( 1 \cdot 0 + 1 \cdot 1 = 1 \) Thus, we have: \[ A^2 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Next, we calculate \( A^3 \): \[ A^3 = A^2 \times A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + 0 \cdot 1 = 1 \) - First row, second column: \( 1 \cdot 0 + 0 \cdot 1 = 0 \) - Second row, first column: \( 2 \cdot 1 + 1 \cdot 1 = 3 \) - Second row, second column: \( 2 \cdot 0 + 1 \cdot 1 = 1 \) Thus, we have: \[ A^3 = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \] ### Step 3: Identify the Pattern From the calculations, we can see a pattern emerging: - \( A^1 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \) - \( A^2 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \) - \( A^3 = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \) It appears that \( A^n = \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix} \). ### Step 4: Generalize for \( A^{2008} \) Using the pattern identified, we can generalize: \[ A^{2008} = \begin{pmatrix} 1 & 0 \\ 2008 & 1 \end{pmatrix} \] ### Final Answer Thus, the final result is: \[ A^{2008} = \begin{pmatrix} 1 & 0 \\ 2008 & 1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE|Exercise Assignment (Section - B) Objective Type Questions (One option is correct)|13 Videos
  • MATRICES

    AAKASH INSTITUTE|Exercise Assignment (Section - C) Objective Type Questions (More than one options are correct)|7 Videos
  • MATRICES

    AAKASH INSTITUTE|Exercise Try yourself|12 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

1/0.04 is equal to :

If A=[(1,0),(1//2,1)] , A^(400) is equal to

If A=[{:(0,1),(1,0):}] then A^(2) is equal to

If A = {:((1,-1),(1,2)):} and I={:((1,0),(0,1)):} then 3A^(-1) is equal to :

A=[[0,1],[1,0]] ,then A^(2) is equal to

If {:A=[(1,0,0),(0,1,0),(a,b,-1)]:} , then A^2 is equal to

If A=[[1,0(1)/(2),1]], then A^(100) is equal to

AAKASH INSTITUTE-MATRICES-Assignment (Section - A) Objective Type Questions (One option is correct)
  1. Let A be a square matrix. Then which of the following is not a symmetr...

    Text Solution

    |

  2. Each diagonal elemetn of a skew symmetric matrix is (A) zero (B) negat...

    Text Solution

    |

  3. If A={:[(1,0),(1,1)]:},"then "A^(2008) is equal to

    Text Solution

    |

  4. If A=[ x y z],B=[(a,h,g),(h,b,f),(g ,f,c)],C=[alpha beta gamma]^T th...

    Text Solution

    |

  5. if for a matrix A, A^2+I=O, where I is the identity matrix, then A equ...

    Text Solution

    |

  6. If A and B are two matrices such that AB=B and BA=A, then

    Text Solution

    |

  7. If {:A+B=[(1,0),(1,1)]andA-2B=[(-1,1),(0,-1)]:}," then "A=

    Text Solution

    |

  8. {:[(7,1,2),(9,2,1)]:}{:[(3),(4),(5)]:}+2{:[(4),(2)]:} is equal to

    Text Solution

    |

  9. If f(x)=x^(2)+4x-5andA={:[(1,2),(4,-3)]:}, then f(A) is equal to

    Text Solution

    |

  10. Multiplicative inverse of the matrix [[2,1],[7,4]] is (i) [[4,-1],[-7...

    Text Solution

    |

  11. If the matrix A is such that ({:(1,3),(0,1):})A=({:(1,1),(0,-1):}), t...

    Text Solution

    |

  12. If A is a squqre matrix such that A^(2)=l, then A^(-1) is equal to

    Text Solution

    |

  13. If X+{:[(2,1),(6,1)]:}={:[(1,1),(0,1)]:} then 'X' is equal to

    Text Solution

    |

  14. If A={:[(1,2,3),(-2,5,7)]:}and2A-3B={:[(4,5,-9),(1,2,3)]:} then B is e...

    Text Solution

    |

  15. If {:[(x,1),(-1,-y)]:}+{:[(y,1),(3,x)]:}={:[(1,2),(2,1)]:}, then

    Text Solution

    |

  16. Let A={:[(2,3,5),(1,0,2),(3,4,5)]:}andA+B-4I=0, then B is equal to

    Text Solution

    |

  17. If A={:[(1,2),(-1,8),(4,9)]:}andX+A=0, then X is equal to

    Text Solution

    |

  18. Show that costheta.[{:(costheta,sintheta),(-sintheta,costheta):}]+sint...

    Text Solution

    |

  19. If {:[(x+y,y-z),(z-2x,y-x)]:}={:[(3,-1),(1,1)]:}, then

    Text Solution

    |

  20. If A=[{:(1,-3,2),(2," "0,2):}]" and "B=[{:(2,-1,-1),(1," "0,-1):}], fi...

    Text Solution

    |