Home
Class 12
MATHS
Let A={:[(1,x/n),(-x/n,1)]:},"then "lim(...

Let `A={:[(1,x/n),(-x/n,1)]:},"then "lim_(ntooo) A^(n)` is

A

`{:[(1,0),(0,1)]:}`

B

`{:[(cosx,sinx),(-sinx,cosx)]:}`

C

`{:[(cosx,-sinx),(sinx,cosx)]:}`

D

`{:[(-1,0),(0,-1)]:}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit of the matrix \( A^n \) as \( n \) approaches infinity, where \[ A = \begin{pmatrix} 1 & \frac{x}{n} \\ -\frac{x}{n} & 1 \end{pmatrix}, \] we will follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & \frac{x}{n} \\ -\frac{x}{n} & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & \frac{x}{n} \\ -\frac{x}{n} & 1 \end{pmatrix}. \] Calculating the elements: - The (1,1) entry: \( 1 \cdot 1 + \frac{x}{n} \cdot -\frac{x}{n} = 1 - \frac{x^2}{n^2} \). - The (1,2) entry: \( 1 \cdot \frac{x}{n} + \frac{x}{n} \cdot 1 = \frac{2x}{n} \). - The (2,1) entry: \( -\frac{x}{n} \cdot 1 + 1 \cdot -\frac{x}{n} = -\frac{2x}{n} \). - The (2,2) entry: \( -\frac{x}{n} \cdot \frac{x}{n} + 1 \cdot 1 = 1 - \frac{x^2}{n^2} \). Thus, we have: \[ A^2 = \begin{pmatrix} 1 - \frac{x^2}{n^2} & \frac{2x}{n} \\ -\frac{2x}{n} & 1 - \frac{x^2}{n^2} \end{pmatrix}. \] ### Step 2: Calculate \( A^3 \) Now, we find \( A^3 = A^2 \cdot A \): \[ A^3 = \begin{pmatrix} 1 - \frac{x^2}{n^2} & \frac{2x}{n} \\ -\frac{2x}{n} & 1 - \frac{x^2}{n^2} \end{pmatrix} \cdot \begin{pmatrix} 1 & \frac{x}{n} \\ -\frac{x}{n} & 1 \end{pmatrix}. \] Calculating the elements: - The (1,1) entry: \( (1 - \frac{x^2}{n^2}) \cdot 1 + \frac{2x}{n} \cdot -\frac{x}{n} = 1 - \frac{x^2}{n^2} - \frac{2x^2}{n^2} = 1 - \frac{3x^2}{n^2} \). - The (1,2) entry: \( (1 - \frac{x^2}{n^2}) \cdot \frac{x}{n} + \frac{2x}{n} \cdot 1 = \frac{x}{n} - \frac{x^3}{n^3} + \frac{2x}{n} = \frac{3x}{n} - \frac{x^3}{n^3} \). - The (2,1) entry: \( -\frac{2x}{n} \cdot 1 + (1 - \frac{x^2}{n^2}) \cdot -\frac{x}{n} = -\frac{2x}{n} - \frac{x}{n} + \frac{x^3}{n^3} = -\frac{3x}{n} + \frac{x^3}{n^3} \). - The (2,2) entry: \( -\frac{2x}{n} \cdot \frac{x}{n} + (1 - \frac{x^2}{n^2}) \cdot 1 = -\frac{2x^2}{n^2} + 1 - \frac{x^2}{n^2} = 1 - \frac{3x^2}{n^2} \). Thus, we have: \[ A^3 = \begin{pmatrix} 1 - \frac{3x^2}{n^2} & \frac{3x}{n} - \frac{x^3}{n^3} \\ -\frac{3x}{n} + \frac{x^3}{n^3} & 1 - \frac{3x^2}{n^2} \end{pmatrix}. \] ### Step 3: Generalize \( A^n \) From the patterns observed, we can generalize \( A^n \): \[ A^n = \begin{pmatrix} 1 - \frac{nx^2}{n^2} & \frac{nx}{n} \\ -\frac{nx}{n} & 1 - \frac{nx^2}{n^2} \end{pmatrix} = \begin{pmatrix} 1 - \frac{3x^2}{n} & \frac{nx}{n} \\ -\frac{nx}{n} & 1 - \frac{3x^2}{n} \end{pmatrix}. \] ### Step 4: Take the Limit as \( n \to \infty \) Now, we take the limit as \( n \) approaches infinity: \[ \lim_{n \to \infty} A^n = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \] ### Final Result Thus, the limit is: \[ \lim_{n \to \infty} A^n = I, \] where \( I \) is the identity matrix.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE|Exercise Assignment (Section - C) Objective Type Questions (More than one options are correct)|7 Videos
  • MATRICES

    AAKASH INSTITUTE|Exercise Assignment (Section - D) Linked Comprehension Type Questions|3 Videos
  • MATRICES

    AAKASH INSTITUTE|Exercise Assignment (Section - A) Objective Type Questions (One option is correct)|30 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

Let A=[[1,(x)/(n)-(x)/(n),1]] then lim_(n rarr oo)A^(n) is

Let A=[[1,x/n-x/n,1]], then lim_(n rarr oo)A^(n) is

If {:A=[(costheta,sintheta),(-sintheta,costheta)]:}, " then "lim_(ntooo) 1/nA^n is

Evaluate lim_(ntooo)(pin)^(2//n)

If x_(1)=3 and x_(n+1)=sqrt(2+x_(n))" ",nge1, then lim_(ntooo) x_(n) is

lim_(ntooo)(n-sqrt(n^(2)+n))

Let A,=([1,-(x)/(n)(x)/(n),1]),B=([0,-11,0]) then lim_(x rarr0)[lim_(n rarr oo)(1)/(x)(I-A^(n))] equals

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then

For n epsilon N let x_(n) be defined as (1+1/n)^((n+x_(n)))=e then lim_(nto oo)(2x_(n)) equals…..

Let f(x)=lim_(ntooo)(1-x^n)/(1+x^n) . Then