Home
Class 12
MATHS
A and B are two matrices of same order 3...

A and B are two matrices of same order `3 xx 3`, where `A=[{:(1,2,3),(2,3,4),(5,6,8):}],B=[{:(3,2,5),(2,3,8),(7,2,9):}]`
The value of |adj (AB)| is

A

24

B

`24^2`

C

`24^3`

D

`65`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of |adj(AB)| for the given matrices A and B, we can follow these steps: ### Step 1: Define the matrices A and B Given: \[ A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 5 & 6 & 8 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 2 & 5 \\ 2 & 3 & 8 \\ 7 & 2 & 9 \end{pmatrix} \] ### Step 2: Calculate the determinant of AB To find |adj(AB)|, we first need to calculate the determinant of the product of matrices A and B. The formula for the determinant of the product of two matrices is: \[ |AB| = |A| \cdot |B| \] #### Step 2.1: Calculate |A| Using the determinant formula for a 3x3 matrix: \[ |A| = a(ei - fh) - b(di - fg) + c(dh - eg) \] where: \[ A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] For matrix A: \[ |A| = 1(3 \cdot 8 - 4 \cdot 6) - 2(2 \cdot 8 - 4 \cdot 5) + 3(2 \cdot 6 - 3 \cdot 5) \] Calculating each term: - First term: \(1(24 - 24) = 0\) - Second term: \(-2(16 - 20) = -2(-4) = 8\) - Third term: \(3(12 - 15) = 3(-3) = -9\) Thus: \[ |A| = 0 + 8 - 9 = -1 \] #### Step 2.2: Calculate |B| Using the same determinant formula for matrix B: \[ |B| = 3(3 \cdot 9 - 8 \cdot 2) - 2(2 \cdot 9 - 8 \cdot 7) + 5(2 \cdot 2 - 3 \cdot 7) \] Calculating each term: - First term: \(3(27 - 16) = 3 \cdot 11 = 33\) - Second term: \(-2(18 - 56) = -2(-38) = 76\) - Third term: \(5(4 - 21) = 5(-17) = -85\) Thus: \[ |B| = 33 + 76 - 85 = 24 \] ### Step 3: Calculate |AB| Now we can find |AB|: \[ |AB| = |A| \cdot |B| = (-1) \cdot 24 = -24 \] ### Step 4: Calculate |adj(AB)| The property of the adjoint states that: \[ |adj(AB)| = |AB|^{n-1} \] where \(n\) is the order of the matrix. For a 3x3 matrix, \(n = 3\): \[ |adj(AB)| = |AB|^{3-1} = |AB|^2 = (-24)^2 = 576 \] ### Final Answer The value of |adj(AB)| is: \[ \boxed{576} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - F|2 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - G|5 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - C|7 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

A and B are two matrices of same order 3 xx 3 , where A=[{:(1,2,3),(2,3,4),(5,6,8):}],B=[{:(3,2,5),(2,3,8),(7,2,9):}] The value of adj (adj A) is,

A and B are two matrices of same order 3 xx 3 , where A=[{:(1,2,3),(2,3,4),(5,6,8):}],B=[{:(3,2,5),(2,3,8),(7,2,9):}] Value of |adj (adj adj( adj A)))| is

Let A and B are two matrices of same order i.e. where A=[(1,-3,2),(2,K,5),(4,2,1)], B=[(2,1,3),(4,2,4),(3,3,5)] If K = 2 then tr (AB) + tr (BA) is equal to

Let A and B are two matrices of same order i.e. where A=[(1,-3,2),(2,K,5),(4,2,1)], B=[(2,1,3),(4,2,4),(3,3,5)] If A is singular matrix then tr(A + B) is equal to

Let A and B are two matrices of same order i.e. where A=[(1,-3,2),(2,K,5),(4,2,1)], B=[(2,1,3),(4,2,4),(3,3,5)] If C = A – B and tr (C) = 0 then K is equal to-

If A=[(3,2),(7,5)], B=[(6,7),(8,9)] , then adj (AB) is equal to

Given A=[{:(2,4,0),(3,9,6):}] "and" B=[{:(1,4),(2,8),(1,3):}] , is (AB)=B'A'?

If A=[(3,9,0),(1,8,-2),(7,5,4)], B=[(4,0,2),(7,1,4),(2,2,6)] , verify that 3(A+B)=3A+3B .

Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(3,7),(2,5):}] and B=[{:(6,8),(7,9):}]

AAKASH INSTITUTE-DETERMINANTS -SECTION - D
  1. A is a matric of order 3 xx 3. If A'=A and five entries in the matrix ...

    Text Solution

    |

  2. Consider matrix A=[a(ij)](nxxn). Form the matrix A-lamdal, lamda bein...

    Text Solution

    |

  3. Consider matrix A=[a(ij)](nxxn). Form the matrix A-lamdal, lamda bein...

    Text Solution

    |

  4. Consider matrix A=[a(ij)](nxxn). Form the matrix A-lamdal, lamda bein...

    Text Solution

    |

  5. Matrix theory can be aplied to investigate the conditions under which ...

    Text Solution

    |

  6. Matrix theory can be aplied to investigate the conditions under which ...

    Text Solution

    |

  7. Matrix theory can be aplied to investigate the conditions under which ...

    Text Solution

    |

  8. A and B are two matrices of same order 3 xx 3, where A=[{:(1,2,3),(2,3...

    Text Solution

    |

  9. A and B are two matrices of same order 3 xx 3, where A=[{:(1,2,3),(2,3...

    Text Solution

    |

  10. A and B are two matrices of same order 3 xx 3, where A=[{:(1,2,3),(2,3...

    Text Solution

    |

  11. Consider the matrix A=[{:(0,-h,-g),(h,0,-f),(g,f, 0):}] STATEMENT-1 :...

    Text Solution

    |

  12. Consider the determinants Delta=|{:(2,-1,3),(1,1,1),(1,-1,1):}|,Delta'...

    Text Solution

    |

  13. STATEMENT-1 : Matrix [{:(a,0,0,0),(0,b,0,0),(0,0,c,0):}] is a diagonal...

    Text Solution

    |

  14. A square matrix [a(ij)] such that a(ij)=0 for i ne j and a(ij) = k whe...

    Text Solution

    |

  15. STATEMENT-1 : The system of equations x + ky + 3z =0, 3x + ky - 2z =0,...

    Text Solution

    |

  16. STATEMENT -1 : f(x) f(x)=|{:((1+x)^21,(1+x)^22,(1+x)^23),((1+x)^31,(1+...

    Text Solution

    |