Home
Class 12
MATHS
Let A=[a(ij)](nxxn)n is odd. Then det ((...

Let `A=[a_(ij)]_(nxxn)`n is odd. Then det `((A-A^(T))^(2009))` is equal to

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - H|1 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - I|5 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - F|2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

A = [a_(ij)]_(mxx n) is a square matrix , if

If A=[a_(ij)]_(mxxn) and B=[b_(ij)]_(nxxp) then (AB)^\' is equal to (A) BA^\' (B) B\'A (C) A\'B\' (D) B\'A\'

If A = [a_(ij)]_(2xx2) , where a_(ij) = ((i + 2j)^(2))/(2 ) , then A is equal to

IF A_(3 times 3) and det A=3 then det (2 adj A) is equal to

Let A=[a_(ij)]_(n xx n) where a_(ij)=i^(2)-j^(2). Then A is: (A) skew symmetric matrix (B) symmetric matrix (C) null matrix (D) unit matrix

Let A and B be two invertible matrices of order 3xx3 . If det. (ABA^(T)) = 8 and det. (AB^(-1)) = 8, then det. (BA^(-1)B^(T)) is equal to

If matrix A=[a_(ij)]_(2X2') where a_(ij)={[1,i!=j0,i=j]}, then A^(2) is equal to

Let A=[a_(ij)]_(n xx n) be a square matrix and let c_(ij) be cofactor of a_(ij) in A. If C=[c_(ij)], then

If A=[a_(ij)]_(n xx n,) where a_(ij)=i^(100)+j^(100) then lim_(n rarr oo)((sum_(i=1)^(n)a_(ij))/(n^(101))) equals