Home
Class 12
MATHS
Find |{:(1+a,b,c),(a,1+b,c),(a,b,1+c):}|...

Find `|{:(1+a,b,c),(a,1+b,c),(a,b,1+c):}|`

Text Solution

AI Generated Solution

The correct Answer is:
To find the determinant \( | \begin{pmatrix} 1 + a & b & c \\ a & 1 + b & c \\ a & b & 1 + c \end{pmatrix} | \), we will follow these steps: ### Step 1: Write the determinant We start with the determinant: \[ D = \begin{vmatrix} 1 + a & b & c \\ a & 1 + b & c \\ a & b & 1 + c \end{vmatrix} \] ### Step 2: Simplify the first column We can simplify the first column by adding the second and third columns to it. This gives us: \[ D = \begin{vmatrix} 1 + a + b + c & b & c \\ a + (1 + b) + c & 1 + b & c \\ a + b + (1 + c) & b & 1 + c \end{vmatrix} \] This can be rewritten as: \[ D = \begin{vmatrix} 1 + a + b + c & b & c \\ 1 + a + b + c & 1 + b & c \\ 1 + a + b + c & b & 1 + c \end{vmatrix} \] ### Step 3: Factor out the common term Notice that the first column has a common factor of \( 1 + a + b + c \). We can factor this out: \[ D = (1 + a + b + c) \begin{vmatrix} 1 & b & c \\ 1 & 1 + b & c \\ 1 & b & 1 + c \end{vmatrix} \] ### Step 4: Perform row operations Next, we can perform row operations to simplify the determinant: - Subtract the first row from the second and third rows: \[ D = (1 + a + b + c) \begin{vmatrix} 1 & b & c \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} \] ### Step 5: Calculate the determinant Now, the determinant of the resulting matrix is: \[ D = (1 + a + b + c) \cdot (1 \cdot 1 \cdot 1) = 1 + a + b + c \] ### Final Answer Thus, the value of the determinant is: \[ \boxed{1 + a + b + c} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - J|12 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - H|1 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Prove that : |{:(a+b,b+c,c+a),(c,a,b),(1,1,1):}|

If f(a,b) =(f(b)-f(a))/(b-a) and f(a,b,c)=(f(b,c)-f(a,b))/(c-a) prove that f(a,b,c)=|{:(f(a),f(b),f(c)),(1,1,1),(a,b,c):}|-:|{:(1,1,1),(a,b,c),(a^(2),b^(2),c^(2)):}| .

Show that |(1,1,1), (a,b,c),(a^2,b^2,c^2)|=(a-b)(b-c)(c-a)

If a,b,c are even natural numbers, then |{:(a-1,a,a+1),(b-1,b,b+1),(c-1,c,c+1):}| is equal to

Prove: |(1,a, b c),(1,b ,c a),(1,c ,a b)|=|(1,a ,a^2),( 1,b,b^2),( 1,c,c^2)|

|(1,a^(2),a^(4)),(1,b^(2),b^(4)),(1,c^(2),c^(4))|=(a+b)(b+c)(c+a)|(1,1,1),(a,b,c),(a^(2),b^(2),c^(2))|

If a, b, c are even natural numbers, then Delta=|{:(a-1,a,a+1),(b-1,b,b+1),(c-1,c,c+1):}| is a multiple of

Evaluate the following: |[1, a, b+c],[1, b, c+a],[1, c, a+b]|